Back to Basics -Dose Algorithms

Presented by: Neill Stanford, CHP Stanford Dosimetry LLC Presented at the 2007 Dosimetry and Records Symposium

Overview

- Performance goals
- Response data
- Designs
- Testing
- DOELAP revision
- Issues

Performance

- Good dosimetry in the field
 Accurately record dose
- Meet the standard
 - Which one?

Design

- Simple design?
- Hand calculation friendly?
- Linear?

Response Data

- Critical investment
- Establishes algorithm "calibration"
- Only pure fields are necessary
- Panasonic (Ash & Doc) data excellent starting point
- Most algorithm designs allow good performance using a representative subset of possible fields.

Design - Simple

- Single element
- Dose = response * correction factor
- Knowledge of field or perfect dosimeter required for best accuracy
- Example: single element extremity dosimeter

Design – Simple (ctd.)

Benefits

- Simplicity
- Minimal uncertainty
- Very useful for troubleshooting more complex algorithms
- Hand calculations possible
- Drawbacks
 - Need field information or perfect dosimeter
 - Minimal redundancy

Design - Complex

RD DOSIMETRY - Back to Basics June 7, 2007

- Multiple elements.
- Use relative element responses (ratios) to determine correction factors
- Knowledge of field or perfect dosimeter not required
- Examples: SDose, DOC, branching style Panasonic, Thermo,...

Design – Complex (ctd.)

Benefits

- Versatility, range of accommodated fields
- No need for a priori field knowledge
- Readings provide information about the field
- Can provide redundancy with multiple elements

Drawbacks

- Complexity means greater uncertainty
- Hand calculation can be difficult to impossible

Testing

- Pure fields (from test data)
 - Optimize design
- Mixed fields (synthetic testing)
 Optimize design
- Worker data
 - Check for unreasonable doses
- Low dose data
 - Check for unreasonable doses

Testing – Synthetic testing

Results of 130 test fields

Shallow dose: 85% within 10% 98% within 20%

Deep dose:

83% within 10% 94% within 20%

- Use arithmetic to combine pure field responses and generate mixed field responses (TLD responses are additive)
- Run and rerun test file to fine tune algorithm

DOELAP Revision

- Proficiency test standard for DOE facilities being revised
- New revision will adopt much of ANSI N13.11-2001
- Algorithms <u>must</u> be revised to maintain performance levels

DOELAP revision (ctd.)

	DOE/EH-0027 (1986)	ANSI N13.11-2001				
Photon fields	6 fields 20-662 keV	•70 fields, 20-1332 keV, •New ck factors, •Angles for keV > 70				
Beta fields	3 fields (²⁰⁴ Tl, ⁹⁰ Sr/Y, DU)	3 fields (⁸⁵ Kr, ²⁰⁴ Tl, ⁹⁰ Sr/Y)				
Neutron fields	2 fields (252 Cf bare, D ₂ O mod)	same				
Mixtures	 ¹³⁷Cs + any x-ray, Any photon plus neutron, High E beta + any photon Any beta + ¹³⁷Cs 	Same, with ⁶⁰ Co as well as ¹³⁷ Cs available for gamma source				
Other		10% rule?				
STANFORD DOSIMETRY - Back to Basics June 7, 2007						

DOELAP Revision (ctd.)

Photon dose conversion factors will change
DOELAP (1986) was based on Yoder et al
NVLAP (2001) based on Grosswendt data

ANFORD DOSIMETRY - Back to Basics June 7, 2007

DOELAP Revision (ctd.)

Dose ≠ Dose

- Dose (DOELAP) is not equal to Dose (NVLAP)
- Most pronounced for energies < 50 keV
- Response/dose will change, algorithm will need modification.

Issues

Background subtraction

- Element specific
- Dose

Investigating suspect performance

- Algorithm problem
- Dosimeter/reader problem

Issues – Background

- How do you subtract background?
 - 1. Subtract background doses
 - Net dose = alg(gross response) alg(bkgd response)
 - 2. Subtract background responses
 - Net dose = alg(gross responses-bkgd responses)
- Subtracting doses:
 - Reduces available information on worker field
 - Added uncertainty with dose calculation on background dosimeter

Using (gross dose) – (background dose) confounds information available on worker dosimeter response.

Issues – Suspect performance

Is it the algorithm or the dosimeter/reader?

- 1. Calculate response/dose for pure fields
 - Observed = mR*/mrem
- 2. Compare to algorithm development data
- 3. If current response=R&D resp. then problem is with algorithm design.
- 4. Otherwise, check dosimeter and reader for instability or non-standard conditions

Issues – Suspect performance

• Example:

- 500 mrem M30 (20 keV x-ray)
- Calculated doses low by 20%

	E1	E2	E3	E4
Observed mR*	300	240	5000	218
mR*/mrem	0.6	0.48	10	0.436
Dev. Data mR*/mrem	0.7332	0.6068	9.9758	0.4404
%diff	-18.2%	-20.9%	0.2%	-1.0%

- Something changed since algorithm dev data.
- This is a good time to apply "simple algorithm" approach.

Final Thoughts

- Start with good data
- Keep algorithm design as simple as practical
- Test it as much as possible
- Document it thoroughly
- Check it constantly
- Revise it when necessary

More information

Click on the button below to visit our website for references and more information. Visit our bibliography page for the most up-to-date version of this presentation.

Stanford Dosimetry, LLC 2315 Electric Ave. Bellingham, WA 98229 info@stanforddosimetry.com (360) 527-2627 (360) 715-1982 (fax)

TANFORD DOSIMETRY - Back to Basics June 7, 2007