NEUTRON DOSIMETRY WITH PANASONIC TLD

Neill Stanford, CHP Stanford Dosimetry, LLC

Presented at the 27th International Dosimetry and Records Symposium

BACKGROUND INFORMATION

Panasonic neutron sensitive phosphor = Li₂B₄O₇
– responds to thermal neutrons
– responds to photons and betas
– has a very different photon energy response characteristics than CaSO₄

MORE BACKGROUND - PHOSPHOR CHARACTERISTICS

Phosphor	Responds to	Used for
$^{n}\mathrm{Li}_{2}^{n}\mathrm{B}_{4}\mathrm{O}_{7}$	Photons, betas, neutrons	Depends on filtration
⁷ Li ₂ ¹¹ B ₄ O ₇	Photons, betas	Non-neutron response (betas and photons, depending on filtration)
⁶ Li ₂ ¹⁰ B ₄ O ₇	Photons, betas, neutrons	Neutron response. Either incident thermal or albedo, depends on filtration.
CaSO ₄	Photons, betas	Photon response

LI₂B₄O₇ RESPONSE CHARACTERISTICS

E2 (^NLI₂^NB₄O₇ UNDER ABOUT 300 MG/CM² PLASTIC)

Radiation type	Field	Response to dose correction factor (DDE)
Gamma	662 keV (¹³⁷ Cs)	Dose = E2 * 1.0
X-ray	73 keV (M150)	Dose = E2 * 1.3
Beta	⁹⁰ Sr/ ⁹⁰ Y	Dose = E2 * 2.4 (SDE)
Neutron	D ₂ O mod ²⁵² Cf	Dose = E2 * 0.5
Neutron	bare ²⁵² Cf	Dose = E2 * 3.8

Correction factor (response to dose) depends on the radiation type and energy.

GOALS AND REQUIREMENTS

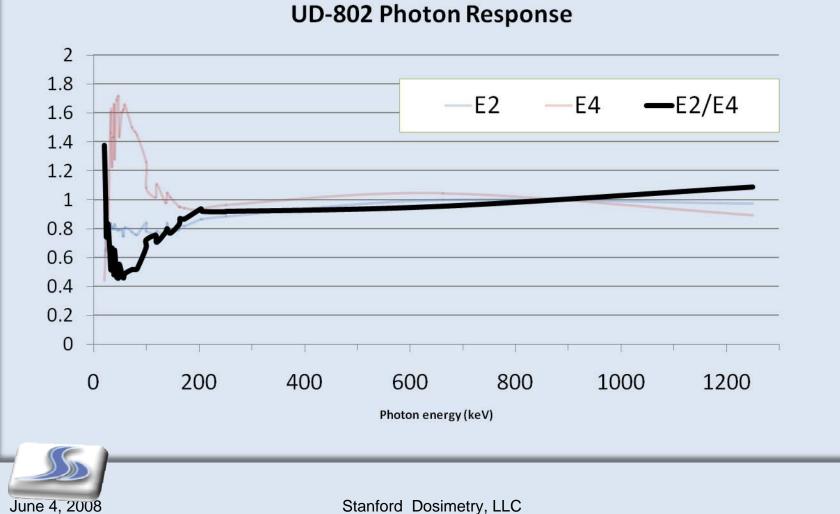
What field combinations? Known photon and known neutron Unknown photon and known neutron Unknown photon and unknown neutron Unknown photon, unknown neutron, unknown beta

OPTIONS: MORE COMPLEXITY PROVIDES MORE CAPABILITY

Dosimeter <i>(example)</i>	Calculation	Neutron Field	Photon Field	Beta Field	Comments
2 Elements	Basic	Known	Known	None	
4 Elements (802)	Simple	Known	Known	Possible	Beta or neutron not both
4 Elements (802)	Function style	Known	Unknown	Possible	Beta or neutron not both
8 Elements (802&809) (812&809)	Function style	Unknown	Unknown	Unknown	Beta and neutron. Provides information on neutron field

TWO ELEMENT BASIC DESIGN

Design	Two elements - same filtration - one sensitive to photons and neutrons (ⁿ Li), one sensitive to photons only (⁷ Li)	
Method	 Calculate neutron signal (neutron sensitive – neutron insensitive) ⁿLi - ⁷Li Calculate neutron dose neutron signal *NCF 	
Issues	 Useful for simple photon plus neutron field No photon characterization No neutron characterization 	



FOUR ELEMENT SIMPLE DESIGN

Design	Four element badge (eg UD-802) -Neutron sensitive element: "Li ₂ "B ₄ O ₇ or ⁶ Li ₂ ¹⁰ B ₄ O ₇ -Neutron insensitive element(s): CaSO ₄
Method	 Calculate neutron signal (neutron sensitive – neutron insensitive) Calculate neutron dose neutron signal *NCF UD-802 example: neutron dose = (E2-E4)*NCF
lssues	 No neutron characterization, single NCF Inaccurate for lower energy photons (< 300 keV), because E4 and E2 have different photon energy response characteristics If not filtered, neutron sensitive element response will include beta

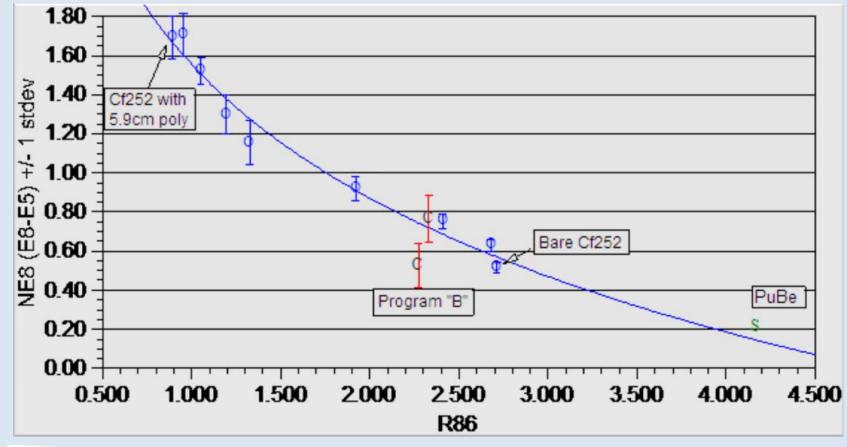
DIFFERENT PHOTON RESPONSE OF E2 AND E4 (UD-802, UD-812)

FOUR ELEMENT FUNCTION DESIGN

Design	Four element badge (eg UD-802) -Neutron sensitive element: ⁿ Li ₂ ⁿ B ₄ O ₇ or ⁶ Li ₂ ¹⁰ B ₄ O ₇ -Neutron insensitive element(s): CaSO ₄	
Method	 Calculate photon response on E2 using E4 response, adjusted using function. Calculate neutron (really non-photon) response of E2 Calculate neutron dose 	
lssues	 No neutron characterization, single NCF Use of function for estimating photon response on E2 allows full range of photon energies If not filtered, neutron sensitive element response will include beta 	

UD-809 DESIGN AND RESPONSE CHARACTERISTICS

	E1 (E5)	E2 (E6)	E3 (E7)	E4 (E8)
Phosphor	⁷ Li ₂ ¹¹ B ₄ O ₇	⁶ Li ₂ ¹⁰ B ₄ O ₇	⁶ Li ₂ ¹⁰ B ₄ O ₇	⁶ Li ₂ ¹⁰ B ₄ O ₇
Front filter	Cd	Sn	Cd	Cd
Back filter	Cd	Cd	Cd	Sn
Used for	Photon response	Incident thermal		Albedo thermal



EIGHT ELEMENT FUNCTION DESIGN

Design	Two four element badges (eg UD-802 & UD-809 or UD-812 & UD-809) -Neutron sensitive elements : "Li ₂ "B ₄ O ₇ or ⁶ Li ₂ ¹⁰ B ₄ O ₇ -Neutron insensitive element(s): CaSO ₄ and ⁷ Li ₂ ¹¹ B ₄ O ₇
Method	 Calculate photon response on neutron sensitive elements using neutron insensitive CaSO₄ elements E3, E4 and ⁷Li₂¹¹B₄O₇E5 Calculate neutron (really neutron) response of E6 and E8 Characterize neutron field using albedo and anti-albedo neutron response Calculate neutron dose with neutron response and selected NCF
lssues	 Use of function for estimating photon responses allows full range of photon energies Can arrive at net beta response on UD-802 using neutron response and characterization Neutron characterization allows selection of appropriate NCF

NEUTRON CORRECTION FACTOR USING UD-809

UD-802 VS UD-812 WITH UD-809

UD-802 Uses ⁿLi₂ⁿB₄O₇ Non-photon response may include beta UD-812 Uses ⁷Li₂¹¹B₄O₇ Non-photon response is essentially all neutron

SOME PRACTICAL CHOICES

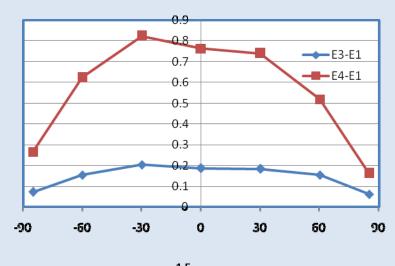
Dosimeter	Comments
UD-802	 Photon +beta or photon + neutron Fine for NVLAP and DOELAP, no beta + neutron For real world, issue different dosimeters for different jobs
Two UD-802	 #1 = standard filtration #2 = with filter to eliminate beta response Neutron response from #2 Beta response from #1 - #2
UD-802 + UD-809	 Can provide neutron characterization Beta response requires subtraction of neutron response
UD-812 + UD-809	 Neutron characterization No need to subtract neutron to get beta response Excellent for completely unknown mixed fields

OTHER ISSUES

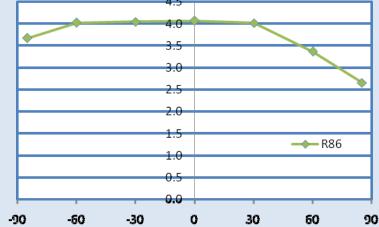
- Filtration is designed for perpendicular radiation
 - Scattered neutrons that make it behind the filters will confound any difference in responses

 Use a Cd fence around the badge to stop unfiltered thermal neutrons from getting to the elements

ANGULAR TESTING OF UD-809


DATA COURTESY OF R. CADOGAN, ANL

- UD-802/UD-809 dosimeters irradiated at PNNL. Rotating phantom
- Response/dose
- Albedo response is decreased
- Response looks more moderated



UD-809 ANGULAR RESPONSE BARE ²⁵²CF HORIZONTAL AXIS

Net neutron response (relative to dose) of incident thermal (E3) and albedo (E4) elements

REFERENCES AND MORE INFORMATION

- <u>A TLD Dose Algorithm for Mixed Fields at</u> <u>a Nuclear Weapons Facility</u>, Stanford Dosimetry, Presented at the Radiation Protection Dosimetry Conference, 1994
- <u>Back to Basics Algorithms (3 MB pdf)</u> Stanford Dosimetry, Presented at 2007 Dosimetry and Records Conference

THE END

Click on the button below to visit our website for references and more information. Visit our bibliography page for the most up-todate version of this presentation.

Stanford Dosimetry, LLC 2315 Electric Ave. Bellingham, WA 98229

info@stanforddosimetry.com (360) 733-7367 (360) 715-1982 (fax)

