Algorithm Development and Implementation

Neill Stanford, CHP www.stanforddosimetry.com

Topics – not algorithm specific

- Performance goals
- N13.11-2001
- Response data
- Using Panasonic's new data
- Testing
- Documentation

Performance Goals

- The most accurate results for actual work environment conditions
- Be reasonable
 - □ Ask for what you need
 - Use specific algorithms for different conditions if possible
- Keep it as simple as possible
 - □ If you only need photons, for example, use E2/0.8. This is ± 24% for all fields tested, even angles.
 - Every additional capability comes at the expense of system uncertainty.

Performance goals (ctd)

- Mixtures design it for the work environment
 - Betas and photons
 - Neutrons and photons
 - Betas and/or neutrons and photons (not with a single 802)
 - □ What photon energy?

HPS N13.11 2001

STANFORD DOSIMETRY

HPS N13.11-2001

- NVLAP since 2002
- DOELAP in January 2004
- More photon fields, same range (plus ⁶⁰Co)
- Mixtures? not if you don't want to
- Angles over half of cat II
- 10% rule

N13.11- New photon fields

- Many more fields
- More consistent with international correction factors
- You do not need to test to all of the new fields

N13.11- New photon fields

- Can pick the energies judiciously and let the function (or matrix solution) interpolate
- One fit to 10 points, the other to over 40

N13.11 - Mixtures

- Old N13.11 only used gammas (¹³⁷Cs) for mixtures with non-photon fields.
- New standard includes low E photons
 BUT
 - Only for hard betas or neutrons, not soft betas
 Why not?
 - You can opt out, regardless of your selection in category II.

N13.11 - Angles

- Category II only (protection level pure photons)
- If E > 70 keV, angle chosen randomly from: -60h, -60v, -40h, -40v, 0, 40v, 40h, 60v, 60h

N13.11-Experience with category II

- Two facilities
- Both tested to IIA
- 3rd, 4th quarter 2002
- Both passed

Angle	Q3	Q4
<70keV	xx	XXX
-60° v	x	х
-60º h	х	
-40° v	xx	х
-40º h	х	X
0°	xxxx	XXX
40° h	x	XX
40° v	x	x
60° h	x	XX
60° v	x	X

N13.11 - 10% Rule

- Imposes a new ± 40% individual test
- Added in an attempt to get in line with ISO;
 - But the ISO (14146-2000) has no limits on average and standard deviation, just individual results.
 - □ ISO specifies an asymmetrical range, -34% to +50%, allowing more room for overestimates.
 - □ ISO uses factor to widen range for low doses.
- Together with angles, this is a significant new challenge.

Response data

Response data

- Establish a standard response set
 Based on standard conditions
 Free from bias no reader cal bias, no fade
 Design the algorithm to the standard responses
- Ensure the responses are maintained for future applicability

Response data –normalize it

- Ensure the response data is standard with normalization to calibration elements.
 - "Calibrate the data" to show response of system perfectly calibrated with no fade
 - Phosphor specific corrections to data set using calibration elements and desired response for standard field (¹³⁷Cs for ex.)

Response data – normalize it

Normalization factors are: □ Phosphor specific □ Fade interval specific Reader and read time specific Use it to investigate QA performance \Box Always include standard field (¹³⁷Cs) Allows the isolation of reader performance and fade from possible system shifts

Panasonic data

Panasonic sponsored test data

□47 photon fields

- All with 5 replicates at 0 degrees
- 22 fields with 2 replicates at each of 8 angles (+/-40°v, +/-40°h, +/-60°v, +/-60°h.)

 Corrected for background and normalized for reader calibration and fade (E2 = E3=¹³⁷Cs dose)

Panasonic data – perpendicular 20 – 662 keV

Panasonic data – perpendicular 20 - 250 keV

Panasonic data - LK fields?

Panasonic data - ⁶⁰Co vs.¹³⁷Cs?

	E1	E2	E3	E4
Cs-137	0.977	1.000	1.000	1.046
Co-60	0.848	0.974	0.880	0.895
% diff	-13%	-3%	-12%	-14%

Panasonic data – angles

Panasonic data – angles

Panasonic data - uses

- Excellent for modeling general response
 First cut at algorithm, general plan
 Effect of angularity
- Should finalize algorithm with system specific data
 - Response functions or matrix
 - □ Site specific factors

Panasonic data -applicability

- Look at response of E2 for the Panasonic set compared to data collected for two other systems in 2002
 - □ Same dosimeter
 - □ Similar cases (hangers)
 - Same normalization procedure

Panasonic data – applicability

 Hs/E2 for Panasonic data
 All points within range of -5% to +7% of the

curve

Panasonic data - applicability

Two other facilities' data. The curve developed for the Panasonic data is superimposed.

Curve is -13% to +19%

Curve is -2% to +25%

Testing

To test the system, shoot badges.

- Tests reader cal, ECFs, fade, bkgd, handling
- Shows routine performance for field badges
- To test the algorithm, use a spreadsheet.
 - Synthetic testing arithmetically generate test responses
 - Total response for a mixed field = sum of responses to each component.
 - Component response = mR*/mrem * mrem
 - Compare algorithm results to sum of synthetic doses
 - Shows algorithm performance, isolated from other effects

Other issues

- Documentation
- Uncertainty calculations
- Keeping it current for slight system shifts

Documentation

- Must be sufficiently detailed to allow full verification. Dose reconstruction. Otherwise, future people are left with reinventing an algorithm to apply to the element readings.
- Design data set
- All calculations must be spelled out
- Test data

