A TLD Dose Algorithm for Mixed Fields at a Nuclear Weapons Facility

> N. Stanford; C. N. Passmore*; M. Prather*; J. B. Martin* *Battelle Pantex

Problem

Design a TLD based personnel dosimeter to monitor whole body exposures to mixed beta, photon, and neutron fields

Specific Challenges

- Changing fields
 - Requires variable correction factors
- Mobile work force
- One algorithm for all workers, must handle all fields
 Accommodate mixtures of all three fields
 Report doses at 7, 300 and 1000 mgcm⁻²

Solution

Eight element TLD badge Panasonic UD-812/809 Dose algorithm using function based correction factors Energy dependent correction factors calculated for each set of TLD readings Calculate photon, beta and neutron doses for each badge reading

Today's Presentation

- Badge description
- Algorithm design
 - Emphasis on neutron portion
- Test results
 Synthetic testing
 - DOELAP results

TLD Design

	E1 (812)	E2 (812)	E3 (812)	E4 (812)	E5 (809)	E6 (809)	E7 (809)	E8 (809)
Phosphor	⁷ Li ₂ ¹¹ B ₄ O ₇	⁷ Li ₂ ¹¹ B ₄ O ₇	CaSO ₄	CaSO ₄	⁷ Li ₂ ¹¹ B ₄ O ₇	⁶ Li ₂ ¹⁰ B ₄ O ₇	⁶ Li ₂ ¹⁰ B ₄ O ₇	⁶ Li ₂ ¹⁰ B ₄ O ₇
Filtration (front/back)	plastic	plastic	plastic	plastic+Pb	Cd/Cd	Sn/Cd	Cd/Cd	Cd/Sn
mg/cm ²	17	300	300	1000	900	800	900	900
Sensitivity	β,γ	β,γ	β,γ	γ	γ	γ,n _{th}	уn	y,n _{albedo}
Primary use	beta	beta	gamma	gamma	gamma	neutron	neutron	neutron

Algorithm Design

Isolate and characterize each component (γ, β, η)
Calculate component specific response
Use the 8 readings to characterize each component
Calculate correction factors
Calculate doses for each component
Sum significant component doses

Algorithm Design - Photons
Photon responses: E2, E4, E5
Photon characterization: E3/E4, E5/E4
Result is three sets of calculated photon doses

Algorithm Design - Betas Subtract photon interference calculated from E4, E5 and characterization ratios NetE1 = (E1 - E1 $_{v}$) $NetE2 = (E2 - E2_{,v})$ Beta response = NetE1 Beta field characterized by: NetE1/NetE2

Algorithm Design - Neutrons Subtract photon interference calculated from E5 $NE8 = (E8 - E8_{y})$ $NE6 = (E6 - E6_{\gamma})$ Neutron response: NE8 Neutron characterization: NE8/NE6 Albedo signal:incident thermal signal

Neutron Correction Factor

- Neutron correction factor is a function of the ratio of albedo:incident thermal
- Model was generated from test data using ²⁵²Cf with 9 configurations of moderation from 0.6 cm to 5.9 cm of PMMA
- Experimental data fit within 10%
- Field data (worst case) within 30%

Neutron Correction Factor

Performance

Synthetic testingDOELAP testing

Synthetic Testing

- Calculate expected responses for pure and mixed DOELAP style fields - using response data
- Process expected responses through algorithm and calculate bias
- Results reflect algorithm performance, isolated from other system variables

Synthetic Testing Results

DOELAP Results - Shallow Dose

DOELAP Results - Deep Dose

DOELAP Proficiency Testing Deep Dose Performance

Future Developments
Incorporation of uncertainty analysis

calculate expanded uncertainty for all dose results
use uncertainty for algorithm decision points

Additional field measurements

Summary

- Single dosimeter badge and dose algorithm for all radiation workers
- All TLD no ancillary system required
- Excellent performance in mixed fields of photons from 16 keV; betas from 800 keV; and neutrons from ²⁵²Cf unmoderated to 6 cm of PMMA